![]() Relating to inverters
专利摘要:
An inverter unit, especially suitable for use in an inverter charger, comprising eight inverters stages which each provide an alternating step function output current and which are arranged in two sets of four, the inverter stages of each set being serially connected and driven sequentially to produce in combination, a generally sinusoidal step function waveform comprising fifteen degree steps, the two step function waveforms thus produced, one by each set, being serially combined, and mutually relatively phase controlled to produce a regulated sinusoidal output voltage for a load, wherein regulation is effected in dependence upon the relative phase between the two step function waveforms. 公开号:US20010004324A1 申请号:US09/736,460 申请日:2000-12-15 公开日:2001-06-21 发明作者:Donald Bingley 申请人:Bingley Donald Watson; IPC主号:H02M7-49
专利说明:
[0001] This invention relates to inverters which provide a substantially sinusoidal output voltage and more especially it relates to inverter chargers. [0001] [0002] Inverter chargers are generally well known and are used in the event of a utility supply failure, to provide continuity of supply for a load from a battery, and/or to provide a supplementary supply to cope with peak power requirements which exceed the capability of a supply generator, power from the utility or from the generator, as the case may be, being used to charge the battery. Inverter chargers may also be arranged to feed surplus energy back to the utility. [0002] [0003] Inverter chargers comprise an inverter unit, which serves to provide a.c. for the load by converting d.c. from the battery, and control/switching apparatus for control of the supplementary/surplus power supply as required, and for providing current for charging the battery from the utility or generator. [0003] [0004] The provision of a sinusoidal output voltage, similar to the waveform of an a.c. 50 hertz or 60 hertz utility supply, is highly desirable, since some loads, such as a.c. motors for example, operate inefficiently when fed from an a.c. source having a high harmonic content such as a square wave source. Also, provision for drawing a sinusoidal current from a 50 hertz or 60 hertz utility supply or generator is highly desirable for maximum utilisation of generator power rating and most efficient usage of utility power when drawing power from the utility supply or generator to charge the battery, or when delivering surplus power from the inverter to the utility or when delivering supplementary power in support of the generator. [0004] [0005] It will thus be appreciated that an inverter charger may be used as a part of standby power or emergency power supply apparatus wherein power for a load is provided via the inverter charger by the battery when the utility supply or generator, as the case may be, fails and wherein the battery is charged via the inverter charger from the generator or utility supply, during periods when it is available, and wherein some supplementary power for the load from the battery may also be provided in order satisfy peak load demand when this exceeds the capability of a generator having insufficient capacity to meet such demands. [0005] [0006] Known inverter chargers capable of providing the functions as just before described, and having a sinusoidal output, tend to be expensive to fabricate and somewhat inefficient in operation due to the design of the inverter unit. [0006] [0007] It is an important object of the present invention to provide an improved inverter unit suitable for use in inverter chargers wherein the shortcomings of such known apparatus are obviated, at least in part. [0007] [0008] Since the present invention is concerned more particularly with the provision of an inverter unit suitable for use in an inverter charger, control/switching apparatus as used in inverter chargers, and which may take any suitable form, will not be described herein in detail. [0008] [0009] According to the present invention an inverter unit comprises eight inverters stages arranged for connection to a common D. C source, which stages provide similar stepped alternating waveforms of substantially the same amplitude and waveshape, eight individual similar single phase transformers to the primary windings of which respective inverter stages are connected, the transformers being connected in two sets of four wherein, the secondary windings of each set are serially connected and driven sequentially to produce in combination, a generally sinusoidal step function waveform comprising fifteen degree incremental steps, the two step function waveforms thus produced, one by each set, being serially combined, and mutually relatively phase controlled to produce a single phase sinusoidal output voltage. [0009] [0010] Each inverter stage may comprise four semiconductor switches, operatively associated with a switch drive circuit and an output transformer, the said switches being connected in bridge configuration across a d.c. supply to feed a primary winding of the output transformer, the drive circuit being operated sequentially to control conduction of the switches so that they produce in the primary winding of the transformer, an alternating stepped waveform and a corresponding a.c. output voltage in the secondary winding of the transformer, the secondary windings of the transformers of the four inverters which in combination define each set, being connected in series whereby the step function waveform is thereby produced for each set. [0010] [0011] It will be readily apparent that the relative phase of the two step function waveforms, can be controlled manually, or automatically by appropriate operation of the drive circuit, thereby to effect the regulation. [0011] [0012] By utilising eight transformers in two sets of four, a regulated sinusoidal output voltage is provided and sinusoidal current is drawn from the utility or generator for charging, efficiently and relatively economically as will hereinafter be explained. [0012] [0013] One embodiment of the invention will now be described with reference to the accompanying drawings wherein; [0013] [0014] FIG. 1, is a block circuit diagram of an inverter charger; [0014] [0015] FIG. 1[0015] a, is a sinusoidal waveform as produced by the inverter charger of FIG. 1; [0016] FIG. 2, is a circuit diagram of a full wave bridge inverter; [0016] [0017] FIG. 2[0017] a, is a waveform as produced by the bridge inverter of FIG. 2; [0018] FIG. 3, is a block circuit diagram of a set of four serially connected full wave bridge inverters; [0018] [0019] FIG. 3[0019] a, is a waveform as produced by the set of FIG. 3; [0020] FIG. 4, is block diagram of an inverter unit comprising two sets as shown in FIG. 3, connected in series and, [0020] [0021] FIG. 4[0021] a, is a waveform as produced by the inverter unit of FIG. 4. [0022] Referring now to FIG. 1, an inverter charger comprises an inverter unit [0022] 1, which is fed with d.c. from a battery 2 via its positive and negative connections represented in FIG. 1 by a line 7, and which provides sinusoidal a.c. for a load (not shown) connected to load terminals 3. A control unit 4, is provided which senses battery voltage via a line 5, inverter voltage via a line 36 and utility or generator voltage via a line 37. In operation, the control unit 4, applies an appropriate control signal to the inverter unit 1, via a line 44, to control the a.c. voltage of the inverter unit 1, as sensed via the line 36, to compensate for battery voltage variation as sensed via a line 5, or load variations. The control unit 4, senses synchronisation of the inverter unit 1, via the line 36, with the utility or generator as sensed via the line 37, and when the battery 2 needs to be charged, or when the generator 6, needs the support of the inverter unit 1, a switch 8 (which may be a relay) is closed by means of a signal fed thereto on a line 42, thereby connecting the inverter unit 1, to the utility or generator 6, as the case may be, so that the battery 2, is charged from the inverter unit 1, via the line 7, or so that the inverter unit 1 operates to provide the required support. However, the control unit 4, which may be fabricated using known control circuitry by those skilled in the art, is not central to the present invention and so it will not be further described in detail herein. [0023] The inverter unit [0023] 1, comprises eight full wave bridge inverters, one of which is shown in FIG. 2. Referring now to FIG. 2, the full wave bridge inverter comprises four transistor switches S1, S2, S3, S4, the operation of which are arranged to produce a waveform as shown in FIG. 2a, which transistor switches are connected in bridge configuration across a d.c. supply on terminals 7, 8, to feed the primary winding 9, of a transformer 10, so as to provide the pulsed output waveform, as shown in FIG. 2a, at the secondary winding 11, of the transformer 10. [0024] As shown in FIG. 3, four bridge inverters [0024] 12, 13, 14, 15, each of which is as shown in FIG. 2, are interconnected so that secondary windings 16, 17, 18, 19, of their respective transformers 20, 21, 22, 23, are coupled in series, the switches S1, S2, S3, S4, of each bridge inverter being driven so to produce a generally sinusoidal output waveform from the set at terminals 24, 25, as shown in FIG. 3a, which output waveform comprises steps in 15 degree increments. [0025] As shown in FIG. 4, two sets [0025] 26, 27, each as shown in FIG. 3, are serially coupled, the inverters of each set being driven via lines 28, 29, by a drive phase control unit 30, which serves to control the relative phase of the waveforms forms produced by each of the sets 26, 27, and thus the output voltage of the inverter unit on terminals 31, 32. In order to facilitate automatic regulation of the output voltage on terminals 31, 32, the voltage across them is sensed in regulator sensor 33, and a control feedback signal provided on a line 34, which serves to effect appropriate phase control. [0026] Since an inverter according to this invention uses eight similar small transformers in two sets of four, economies of scale are enjoyed and the provision of a sinusoidal output is simply facilitated. [0026]
权利要求:
Claims (7) [1" id="US-20010004324-A1-CLM-00001] 1. An inverter unit comprising eight inverters stages arranged for connection to a common D. C source, which stages provide similar stepped alternating waveforms of substantially the same amplitude and waveshape, eight individual similar single phase transformers to the primary windings of which respective inverter stages are connected, the transformers being connected in two sets of four wherein, the secondary windings of each set are serially connected and driven sequentially to produce in combination, a generally sinusoidal step function waveform comprising fifteen degree incremental steps, the two step function waveforms thus produced, one by each set, being serially combined, and mutually relatively phase controlled to produce a single phase sinusoidal output voltage. [2" id="US-20010004324-A1-CLM-00002] 2. An inverter as claimed in claim 1 , wherein the output voltage is controlled in dependence upon the relative phase between the two step function waveforms thereby to provide automatic regulation of the output voltage or current. [3" id="US-20010004324-A1-CLM-00003] 3. An inverter as claimed in claim 1 or claim 2 , wherein each inverter stage comprises four semiconductor switches, operatively associated with a switch drive circuit and an output transformer, the said switches being connected in bridge configuration across a d.c. supply to feed a primary winding of the output transformer, the drive circuit being operated to control conduction of the switches sequentially so that they produce in the primary winding of the transformer, an alternating stepped waveform and a corresponding a.c. output current in the secondary winding of the transformer, the secondary windings of the transformers of the four inverter stages which in combination define each set, being connected in series whereby the step function waveform is thereby produced for each set. [4" id="US-20010004324-A1-CLM-00004] 4. An inverter charger comprising an inverter as claimed in any preceding claim arranged to feed a load normally fed from a utility or generator supply so as to provide continuity of supply if the utility or generator supply fails and control means for controlling the supply of charging current fed from the utility or generator supply to a battery used for supplying d.c. to the inverter. [5" id="US-20010004324-A1-CLM-00005] 5. An inverter charger as claimed in claim 4 , wherein the control means operates also to control the provision from the inverter of supplementary power when the capacity of the generator is inadequate. [6" id="US-20010004324-A1-CLM-00006] 6. An inverter charger as claimed in claim 4 , or claim 5 , including switch means responsive to a control signal produced by the control means in dependence upon battery voltage to connect the inverter to the utility or generator so that sinusoidal battery charging current is fed from the utility or generator back through the inverter to charge the battery. [7" id="US-20010004324-A1-CLM-00007] 7. An inverter charger as claimed in any of claims 4, to 6, including switch means responsive to a control signal produced by the control means in dependence upon load to connect the inverter to the utility or generator so that supplementary current is fed to the utility or generator from the inverter.
类似技术:
公开号 | 公开日 | 专利标题 US5917251A|1999-06-29|Method and circuit arrangement to cover peak energy demands in electrical alternating or three-phase current networks US9425704B2|2016-08-23|Power inverter with multi-fed on-board power supply for supplying a controller US6795322B2|2004-09-21|Power supply with uninterruptible function US4340823A|1982-07-20|Uninterruptible power supply US6256213B1|2001-07-03|Means for transformer rectifier unit regulation US7072194B2|2006-07-04|Power conversion system and method of converting power KR101116428B1|2012-03-05|Energy Storage System US6304006B1|2001-10-16|Energy management uninterruptible power supply system US5994793A|1999-11-30|Uninterruptible power supply with plurality of inverters JP2011200096A|2011-10-06|Power storage system CA2431664A1|2001-06-16|Alternator with regulation of multiple voltage outputs JP2011211885A|2011-10-20|Power storage system CA2302621A1|1999-03-18|System for supplying electric-motor loads with electrical energy GB2287843A|1995-09-27|Off-Line Uninterruptible Power Supply JPH11113191A|1999-04-23|Uninterruptible power-supply apparatus and its charging control method US6493248B2|2002-12-10|Relating to inverters WO1988006814A1|1988-09-07|IMPROVEMENTS IN OR RELATING TO D.C. to A.C. INVERTERS JP2000083330A|2000-03-21|Distributed power supply installation US5109327A|1992-04-28|Electronic system and method for supplying power to single-phase loads using a three-phase power supply JP2568271B2|1996-12-25|DC uninterruptible power supply JP2956372B2|1999-10-04|Uninterruptible power system JP2016174477A|2016-09-29|Input control power storage system JPH1118441A|1999-01-22|Method of initially charging dc capacitor of inverter CN211151612U|2020-07-31|Power supply device and power supply system US20190312527A1|2019-10-10|Dc-ac converter and method of dc-ac conversion
同族专利:
公开号 | 公开日 GB2354121A|2001-03-14| GB9921167D0|1999-11-10| US6493248B2|2002-12-10| GB2354121B|2001-07-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 BE619008A|1961-06-19|1900-01-01||| US3581212A|1969-07-31|1971-05-25|Gen Electric|Fast response stepped-wave switching power converter circuit| US3628123A|1970-03-11|1971-12-14|Westinghouse Electric Corp|Apparatus for harmonic neutralization of inverters| US4032832A|1975-07-14|1977-06-28|Bunker Ramo Corporation|Dc to ac inverter with unregulated input and regulated output| US4063144A|1976-03-25|1977-12-13|Sundstrand Corporation|Inverter for providing a sinusodial output having a low harmonic content| US4106089A|1976-09-10|1978-08-08|The Garrett Corporation|Alternating current power dividing or combining system| US4052658A|1976-10-18|1977-10-04|Sundstrand Corporation|Inverter circuit for producing synthesized sinusoidal waveforms| US4159513A|1977-09-30|1979-06-26|Westinghouse Electric Corp.|Static controlled AC motor drive having plug reversal capability| US5041957A|1989-12-20|1991-08-20|Sundstrand Corporation|Stepped-waveform inverter with six subinverters| US5040105A|1989-12-20|1991-08-13|Sundstrand Corporation|Stepped-waveform inverter with eight subinverters| US5337227A|1992-04-15|1994-08-09|Westinghouse Electric Corporation|Harmonic neutralization of static inverters by successive stagger| GB2327818B|1997-07-29|2001-10-17|Gec Alsthom Ltd|Switching control arrangement| DE19736613A1|1997-08-22|1999-02-25|Asea Brown Boveri|Inverter| DE19736614A1|1997-08-22|1999-02-25|Asea Brown Boveri|Inverter|US7157806B2|2004-03-12|2007-01-02|C. E. Niehoff & Co.|System and method for controlling and distributing electrical energy in a vehicle|
法律状态:
2006-04-13| FPAY| Fee payment|Year of fee payment: 4 | 2010-05-28| FPAY| Fee payment|Year of fee payment: 8 | 2014-07-18| REMI| Maintenance fee reminder mailed| 2014-12-10| LAPS| Lapse for failure to pay maintenance fees| 2015-01-05| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2015-01-27| FP| Lapsed due to failure to pay maintenance fee|Effective date: 20141210 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 GB99211674||1999-09-05|| GB9921167A|GB2354121B|1999-09-09|1999-09-09|Improvements in or relating to inverters| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|